Least Squares Support Vector Machine-Based Multivariate Generalized Predictive Control for Parabolic Distributed Parameter Systems with Control Constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

Support Vector Machines Based Generalized Predictive Control of Chaotic Systems

This work presents an application of the previously proposed Support Vector Machines Based Generalized Predictive Control (SVM-Based GPC) method [1] to the problem of controlling chaotic dynamics with small parameter perturbations. The Generalized Predictive Control (GPC) method, which is included in the class of Model Predictive Control, necessitates an accurate model of the plant that plays v...

متن کامل

A Weighted Generalized Least–squares Support Vector Machine

Among Neural Network methods, the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they automatically derive the “optimal” network structure, in respect to generalization error for a given problem. In practice it means, that a lot of decisions that had to be made during the design of a traditional NN (e.g. the number of neurons, the length and type of t...

متن کامل

Sparse least squares Support Vector Machine classifiers

In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equalit y constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. Ho wever, a d r a wback is that sparseness is lost in the LS-SVM ...

متن کامل

Sparse Least Squares Support Vector Machine Classiiers

In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equality constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. However, a drawback is that sparseness is lost in the LS-SVM case ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: 2073-8994

DOI: 10.3390/sym13030453